首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   370篇
  免费   17篇
  国内免费   4篇
测绘学   8篇
大气科学   64篇
地球物理   97篇
地质学   104篇
海洋学   27篇
天文学   71篇
综合类   3篇
自然地理   17篇
  2024年   1篇
  2023年   2篇
  2022年   8篇
  2021年   9篇
  2020年   11篇
  2019年   8篇
  2018年   10篇
  2017年   16篇
  2016年   27篇
  2015年   20篇
  2014年   7篇
  2013年   21篇
  2012年   21篇
  2011年   17篇
  2010年   18篇
  2009年   19篇
  2008年   23篇
  2007年   8篇
  2006年   17篇
  2005年   17篇
  2004年   8篇
  2003年   8篇
  2002年   6篇
  2001年   3篇
  2000年   5篇
  1999年   8篇
  1998年   3篇
  1997年   14篇
  1996年   5篇
  1995年   9篇
  1994年   5篇
  1993年   4篇
  1992年   2篇
  1991年   4篇
  1990年   4篇
  1989年   1篇
  1986年   3篇
  1985年   3篇
  1984年   3篇
  1983年   3篇
  1982年   2篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有391条查询结果,搜索用时 156 毫秒
101.
Multiscale analysis of vegetation surface fluxes: from seconds to years   总被引:2,自引:0,他引:2  
The variability in land surface heat (H), water vapor (LE), and CO2 (or net ecosystem exchange, NEE) fluxes was investigated at scales ranging from fractions of seconds to years using eddy-covariance flux measurements above a pine forest. Because these fluxes significantly vary at all these time scales and because large gaps in the record are unavoidable in such experiments, standard Fourier expansion methods for computing the spectral and cospectral statistical properties were not possible. Instead, orthonormal wavelet transformations are proposed and used. The are ideal at resolving process variability with respect to both scale and time and are able to isolate and remove the effects of missing data (or gaps) from spectral and cospectral calculations. Using the spectra, we demonstrated unique aspects in three appropriate ranges of time scales: turbulent time scales (fractions of seconds to minutes), meteorological time scales (hour to weeks), and seasonal to interannual time scales corresponding to climate and vegetation dynamics. We have shown that: (1) existing turbulence theories describe the short time scales well, (2) coupled physiological and transport models (e.g. CANVEG) reproduce the wavelet spectral characteristics of all three land surface fluxes for meteorological time scales, and (3) seasonal dynamics in vegetation physiology and structure inject strong correlations between land surface fluxes and forcing variables at monthly to seasonal time scales. The broad implications of this study center on the possibility of developing low-dimensional models of land surface water, energy, and carbon exchange. If the bulk of the flux variability is dominated by a narrow band or bands of modes, and these modes “resonate” with key state and forcing variables, then low-dimensional models may relate these forcing and state variables to NEE and LE.  相似文献   
102.
103.
104.
A seasonal field study was carried out in the Seine estuary to determine the chemistry of sediment porewaters using the 'peeper' technique and changes in the elevation of the mudflats using the 'Altus' technique. This approach allowed us to evaluate the release of nutrients and to link these releases to the sediment hydrodynamics. Our results show that nutrient and organic matter cycling in a Seine estuary mudflat exhibits a seasonal behaviour, which is mainly influenced by variations in hydrodynamics. Sediments, rich organic matter, were input during floods and they were mineralized during summer and autumn, releasing nutrients and dissolved organic carbon into the sediment porewaters. The nutrient release, including ammonium, is mainly linked to the mineralization of organic matter, while the release of phosphate is delayed. The delay could be the result of phosphate association with organic matter and/or its co-precipitation with calcium and iron.  相似文献   
105.
We examined how the projected increase in atmospheric CO2 and concomitant shifts in air temperature and precipitation affect water and carbon fluxes in an Asian tropical rainforest, using a combination of field measurements, simplified hydrological and carbon models, and Global Climate Model (GCM) projections. The model links the canopy photosynthetic flux with transpiration via a bulk canopy conductance and semi-empirical models of intercellular CO2 concentration, with the transpiration rate determined from a hydrologic balance model. The primary forcing to the hydrologic model are current and projected rainfall statistics. A main novelty in this analysis is that the effect of increased air temperature on vapor pressure deficit (D) and the effects of shifts in precipitation statistics on net radiation are explicitly considered. The model is validated against field measurements conducted in a tropical rainforest in Sarawak, Malaysia under current climate conditions. On the basis of this model and projected shifts in climatic statistics by GCM, we compute the probability distribution of soil moisture and other hydrologic fluxes. Regardless of projected and computed shifts in soil moisture, radiation and mean air temperature, transpiration was not appreciably altered. Despite increases in atmospheric CO2 concentration (Ca) and unchanged transpiration, canopy photosynthesis does not significantly increase if Ci/Ca is assumed constant independent of D (where Ci is the bulk canopy intercellular CO2 concentration). However, photosynthesis increased by a factor of 1.5 if Ci/Ca decreased linearly with D as derived from Leuning stomatal conductance formulation [R. Leuning. Plant Cell Environ 1995;18:339–55]. How elevated atmospheric CO2 alters the relationship between Ci/Ca and D needs to be further investigated under elevated atmospheric CO2 given its consequence on photosynthesis (and concomitant carbon sink) projections.  相似文献   
106.
We invert 2D surface gravity data constrained both by geological and seismic information. We use a number of pre-processing tools in order to reduce the general multi-body inversion into several single-body inversions, whereby we can reduce the overall complexity of the inversion task. This is done with as few assumptions as possible. Furthermore, for a single-body inversion we uncouple the determination of the shape of the causative sources from the determination of their mass density contrast to the surroundings. The inversion for the geometrical shape of the source body is done in steps. Firstly, a rough 3D shape of the source is modelled—a model consisting of the vertical mass columns of equal height. The horizontal extension is implied by the surface gravity signal. Subsequently, the shape of each source body is modified to obtain a better fit to the surface gravity data. In each modification step, the overall change of the shape of the source body is followed by an update of the mass density contrast to the surroundings. The technique was applied to a set of gravity data from the Eastern Goldfield area in Western Australia. The area has been widely studied in the past. In 1999, two seismic profiles that cross-sect the area were measured. Furthermore, an extensive geological modelling for the area has been conducted. The practical goal of this work was to verify the geological interpretation using the potential field data (mainly the gravity data although magnetic data were also available) and only weakly constrained by the seismic information. The result was the reconstruction of the ‘rough’ 3D geometry of the source bodies and the estimation of a constant mass density contrast to the surroundings. A possible extension of this technique for detailed studies of the geological model is briefly discussed.  相似文献   
107.
An Investigation of Higher-Order Closure Models for a Forested Canopy   总被引:11,自引:10,他引:1  
Simultaneous triaxial sonic anemometer velocity measurements vertically arrayed at six levels within and above a uniform pine forest were used to examine two parameterization schemes for the triple-velocity correlation tensor employed in higher-order closure models. These parameterizations are the gradient-diffusion approximation typically used in second-order closure models, and the full budget for the triple-velocity correlation tensor typically employed in third-order closure models. Both second- and third-order closure models failed to reproduce the measured profiles of the triple-velocity correlation within and above the canopy. However, the Reynolds stress tensor profiles (including velocity variances) deviated greatly from the measurements only within the lower levels of the canopy. It is shown that the Reynolds stresses are most sensitive to the parameterization of the triple-velocity correlation in these lower canopy regions where local turbulent production is negligible and turbulence is mainly sustained by the flux transport term. The failure of the third-order closure model to reproduce the measured third moments in the upper layers of the canopy-top contradicts conclusions from a previous study over shorter vegetation but agrees with another study for a deciduous forest. Whether the third-order closure model failure is due to the zero-fourth-cumulant closure approximation is therefore considered. Comparisons between measured and predicted quadruple velocity correlations suggest that the zero-fourth-cumulant approximation is valid close to the canopy-atmosphere in agreement with recent experiments.  相似文献   
108.
Orthonormal wavelet expansions are applied to atmospheric surface layer velocity measurements. The effect of intermittent events on the energy spectrum of the inertial subrange is investigated through analysis of wavelet coefficients. The local nature of the orthonormal wavelet transform in physical space makes it possible to identify a relationship between the inertial subrange slope of the local wavelet spectrum and a simple indicator (i.e. the local variance of the signal) of local intermittency buildup. The slope of the local wavelet energy spectrum in the inertial subrange is shown to be sensitive to the presence of intermittent events. During well developed intermittent events (coherent structures), the slope of the energy spectrum is somewhat steeper than -5/3, while in less active regions the slope is found to be flatter than -5/3. When the slopes of local wavelet spectra are ensemble averaged, a slope of -5/3 is recovered for the inertial subrange.  相似文献   
109.
110.
Integrated studies and revisions of sedimentary basins and associated magmatism in Peru and Bolivia (8–22°S) show that this part of western Gondwana underwent rifting during the Late Permian–Middle Jurassic interval. Rifting started in central Peru in the Late Permian and propagated southwards into Bolivia until the Liassic/Dogger, along an axis that coincides with the present Eastern Cordillera. Southwest of this region, lithospheric thinning developed in the Early Jurassic and culminated in the Middle Jurassic, producing considerable subsidence in the Arequipa basin of southern Peru. This 110-Ma-long interval of lithospheric thinning ended 160 Ma with the onset of Malm–earliest Cretaceous partial rift inversion in the Eastern Cordillera area.The lithospheric heterogeneities inherited from these processes are likely to have largely influenced the distribution and features of younger compressional and/or transpressional deformations. In particular, the Altiplano plateau corresponds to a paleotectonic domain of “normal” lithospheric thickness that was bounded by two elongated areas underlain by thinned lithosphere. The high Eastern Cordillera of Peru and Bolivia results from Late Oligocene–Neogene intense inversion of the easternmost thinned area.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号